Question 180-187 of 346: Integration and Its Applications (Section A: Common) | CUET (Common University Entrance Test) UG Mathematics Common (319) | Includes PYQs | Get Solutions with Detailed Explanations

Choose Programs

πŸ“Ή Video Course 2025 (0 Lectures [0 mins]): Offline Support

Rs. 100.00

Price Per Month, Add to Cart for 3/6/12-Month Discounts

Preview All LecturesDetails

🎯 787 MCQs (& PYQs) with Explanations (2025-2026 Exam)

Rs. 400.00

3 Year Validity

CoverageDetailsSample Explanation

Help me Choose❓Already Subscribed?

Question 180

Section A: CommonIntegration and Its ApplicationsEvaluation of Indefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

If ∫[dx(1βˆ’cos4x)]=βˆ’(12)cotx+Atanβˆ’1[f(x)]+c then A=? and f(x)=?

Choices

Choice (4)Response

a.

βˆ’2 and 2tanx

b.

2 and 2tanx

c.

[122] and 2tanx

d.

(24) and [12cotx]

Question 181

Section A: CommonIntegration and Its ApplicationsIndefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

∫[dx{(x+2)((1213))(xβˆ’5)((1413))}]= ________ +c

Choices

Choice (4)Response

a.

2e([(βˆ’x)2])sec(x2)

b.

e([(βˆ’x)2])sec(x2)

c.

βˆ’e([(βˆ’x)2])sec(x2)

d.

βˆ’2e([(βˆ’x)2])sec(x2)

Question 182

Section A: CommonIntegration and Its ApplicationsIndefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

∫[dx{(x+2)((1213))(xβˆ’5)((1413))}]= ________ +c

Choices

Choice (4)Response

a.

[(13)7][x+2xβˆ’5]((113))

b.

[(βˆ’13)7][xβˆ’5x+2]((113))

c.

[(13)7][xβˆ’5x+2]((113))

d.

[(βˆ’13)7][x+2xβˆ’5]((113))

Question 183

Section A: CommonIntegration and Its ApplicationsIndefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

∫[1+xβˆ’(1x)]e([x+(1x)])dx= ________ +c

Choices

Choice (4)Response

a.

(xβˆ’1)e([x+(1x)])

b.

(x+1)e([x+(1x)])

c.

xe([x+(1x)])

d.

βˆ’xe([x+(1x)])

Question 184

Section A: CommonIntegration and Its ApplicationsIndefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

If ∫[5x+3{x2+4x+10}]dx=k1(x2+4x+10)+k2log|(x+2)+x2+4x+10|+c then k1+k2= ________

Choices

Choice (4)Response

a.

1

b.

2

c.

βˆ’1

d.

βˆ’2

Question 185

Section A: CommonIntegration and Its ApplicationsIndefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

∫[exdx{(ex+2012)(ex+2013)}]= ________ +c

Choices

Choice (4)Response

a.

log[(ex+2012)(ex+2013)]

b.

[(ex+2013)(ex+2012)]

c.

[(ex+2012)(ex+2013)]

d.

log[(ex+2013)(ex+2012)]

Question 186

Section A: CommonIntegration and Its ApplicationsIndefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

If ∫[5xdx25xβˆ’1]=klog|5x+25xβˆ’1|+c then k= ________

Choices

Choice (4)Response

a.

loge25

b.

loge(15)

c.

loge(125)

d.

[1loge5]

Question 187

Section A: CommonIntegration and Its ApplicationsEvaluation of Indefinite Integrals

MCQ

Read the question, then carefully choose the correct answer(s).

∫sinβˆ’1[2x(1+x2)]dx=f(x)βˆ’log(1+x2)+c then f(x)= ________

Choices

Choice (4)Response

a.

βˆ’xtanβˆ’1x

b.

xtanβˆ’1x

c.

2xtanβˆ’1x

d.

βˆ’2xtanβˆ’1x